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ABSTRACT: Cellulose nanocrystals (CNCs) exhibit outstanding
mechanical properties exceeding that of Kevlar, serving as reinforcing
domains in nature’s toughest biological nanocomposites such as wood.
To establish a molecular-level understanding of how CNCs develop
high resistance to failure, here we present new analyses based on
atomistic simulations on the fracture energy of Iβ CNCs. We show that
the fracture energy depends on the crystal width, due to edge defects
that significantly reduce the fracture energy of small crystals but have a
negligible effect beyond a critical width. Additionally, collective effects
of sheet stacking and stabilization by van der Waals interactions
saturate at a critical crystal thickness that we predict with an analytical relationship based on a physical model. Remarkably, ideal
dimensions optimizing fracture energy are found to be 4.8−5.6 nm in thickness (approximately 6−7 layers) and 6.2−7.3 nm in
width (approximately 6−7 cellulose chains), which correspond to the common dimensions of CNCs found in nature. Our
studies shed light on evolutionary principles that provide guidance toward high mechanical performance in natural and synthetic
nanobiocomposites.

Cellulose is the most abundant organic compound and
biopolymer found on our planet,1 serving as a

morphologically versatile building block for natural structural
materials. The elastic modulus of cellulose nanocrystals
(CNCs) exceeds 100 GPa,2 making it a potential low-cost
reinforcing filler material for nanocomposites and nanofibers.
CNCs are incorporated in soft amorphous cellulose domains in
wood, leading to a reinforced nanocomposite with exceptional
strength and toughness (Figure 1A).4 The low density, large
aspect ratio, high axial modulus, and high specific strength5−7 of
cellulose nanocrystals and nanowhiskers arising from their
nearly defect-free structure make them ideal building blocks as
fillers3,14−19 that can also be easily functionalized through
compatibilizing surface modifications.2,5,8−13 Along this line,
environmentally responsive polymer−CNC nanocomposites
have been manufactured to extend mechanical properties of
cellulose nanocomposites to the dynamic range.3,14,15

Combining relatively rigid, organic nonmineralized nano-
crystals with soft amorphous domains is a universal strategy for
achieving strength and toughness in biomaterials like spider
silk,16,17 yet this strategy often requires the size of the
reinforcing domains to be small in one or more dimensions.
Whereas atomistic studies on CNCs have focused on the axial
strength7,18−20 and the interaction of CNCs with secondary
molecules such as polymers or solvents,3,21,22 the role of defects
and size effects4,10,23−27 on mechanical properties remains to be
fully understood.3 To address this issue, here we carry out an
atomistic study on the nanoscale interactions in CNCs that give
rise to impressive macroscale mechanical properties. We focus
on a model system consisting of a single monoclinic Iβ cellulose

nanocrystal, the most stable and naturally abundant CNC
polymorph.28 In recent experiments, cellulose microfibril
segments were shown to peel along the [200] plane when
subjected to intensive sonication,29,30 which arguably is the
weakest plane of CNCs under isotropic loading conditions. On
the basis of this assumption, here we present results from
tensile pulling simulations that aim to quantify the fracture
strength of the [200] surface in CNCs that are commonly
found in nature and in man-made cellulose nanocomposites.
Using steered molecular dynamics (SMD),31 we calculate the
work required to induce fracture as the two halves of the crystal
are forcibly separated (Figure 1B, and see Supporting
Information for simulation setup and protocols). We then
vary the dimensions of CNCs to assess the effects of size on the
nanoscale fracture energy calculations. Finally, we corroborate
the size-dependence effects with the typical dimensions of
CNCs observed in nature.
Figure 2A illustrates the potential of mean force (PMF) or,

equivalently, one-dimensional free energy landscape of CNC
interactions computed from SMD simulations (see Supporting
Information for details). The equilibrium distance between
sheets, defined as the minimum of the energy well, is measured
to be a = 3.8 Å, which is in agreement with a = 3.9 Å measured
experimentally.32 The free energy difference corresponding to
the work to fracture the CNC ranges from 3500 kcal/mol (6 ×
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5 × 5 crystal) to 80 000 kcal/mol (6 × 15 × 20 crystal),
depending on crystal size. When normalized by the cross-
sectional area of the crystals, the resulting fracture energies
range from approximately G = 3 to 5 kcal/mol-Å2 (2.4−3.6 J/
m2), with surface energy values ranging from γs = 1.5 to 2.5
kcal/mol-Å2 (1.2−1.8 J/m2). The measured fracture energy is
comparable to that of brittle materials such as silica glass with a
fracture energy of 1−5 J/m2 as reported experimentally.33 The
PMF can be considered as the effective intercolloidal potential
between two halves of a CNC, which has never been quantified

experimentally nor computationally for cellulose nanocrystals.3

Our analysis illustrates here that while CNCs have weak
interactions, their work to fracture is high at the nanoscale even
though larger-scale plasticity mechanisms cannot be activated.
The potential well obtained through PMF calculations can

also be utilized to compute the elastic constants and stress−
strain behavior (see Supporting Information).34 This stress−
strain relationship can be considered as the nanoscale cohesive
law describing the interfacial failure behavior along this plane
continuously in elastic and nonlinear (large deformation)
regimes. The corresponding stress−strain plot is shown in
Figure 2B, which yields a transverse modulus of ET = 20.1 GPa
for the CNC in the initial linear elastic regime. The modulus
value falls into the range predicted from previous simulations as
well as atomic force microcopy experiments of 11−57 GPa.35

This value is lower than the elastic modulus along the chain
direction (E = 110−200 GPa35) because the intersheet plane is
stabilized by weaker interactions compared to the covalent
interactions and hydrogen bonds in the chain direction.36−39

On the contrary, factors contributing to intersheet stability can
be attributed to either (i) the large number of hydroxyl groups
that facilitate intersheet hydrogen bonding36,40 or (ii) out-of-
plane van der Waals interactions between the backbone ring
structures.41,42 Analysis presented in Figure 3A clarifies the
dynamics of these molecular interactions. Hydrogen bond
occupancies, defined here as the percentage of time that a
hydrogen bond is considered “on” during the simulation,
provide a measure for the strength of cohesion along a plane,
where longer bond lifetimes lead to greater fracture strength
according to stochastic theories of fracture.43,44 Whereas the
hydrogen bonds stabilize the intrasheet directions and have
high stability (generally greater than 90% occupancy and with
double hydrogen bonding up to 200% occupancy), the
intersheet hydrogen bonds are largely transient (less than
10% occupancy on average) due to the unfavorable donor−
hydrogen−acceptor angle of hydroxyls orthogonal to the sheet
plane. Thus, we attribute the strong interaction along the
intersheet direction to hydrophobic ring−ring interactions and
hydrophilic ribbons within the sheets in line with studies
supporting the amphiphilic nature of cellulose sheets.41,42,45

The hydrogen bond occupancy is typically lower along the
edges of crystals due to higher thermal fluctuations of crystals.
As illustrated in Figure 3B, the average root-mean-square

Figure 1. (A) Hierarchical structure of wood and the nanocomposite
morphology involving CNCs and amorphous domains. (B) Atomistic
CNC structure used in simulation, highlighting the [200] plane along
which fracture occurs.

Figure 2. (A) Potential of mean force (PMF) for 2 m/s pulling of the 7 × 10 × 10 CNC, yielding a ΔE of ∼14 560 kcal/mol and (B) the stress−
strain plot for the 7 × 10 × 10 crystal obtained from the PMF curve. The transverse Young’s Modulus is calculated to be 20.1 GPa.
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fluctuation (RMSF) of atoms across the width for different size
nanocrystals is not the same. Higher overall RMSFs observed in
smaller crystals are particularly amplified near the edges,
indicating greater thermal fluctuations of the atoms and thus
lower stability. These unstable regions constitute a greater
portion of the overall width, thereby lowering CNC stability.
This implies that the ideal width of a CNC inclusion has to be
large enough such that the edge defects play a lesser role and
that larger CNCs have greater fracture energy. Assuming that
the number of edge chains that have lower binding strength is
more or less constant across all systems (having a width w), the
fracture energy scaling should be size dependent and scale
inversely with the width, w; that is G ∼ ((w − t)/w), where t
denotes the size of the defect region.
To quantify whether this hypothesis is correct, we extend our

SMD simulations to directly compute the fracture energy of
CNCs with widths varying from 3 to 15 repeat units. Similar
size-dependence studies have been carried out for silk
nanocrystals and various protein structures in the past to
explain the scaling of strength with molecular dimensions.16,46

Here, the fracture energy is a key metric for cellulose materials

because CNCs commonly act as physical cross-links that resist
failure. Figure 4A illustrates that as the width of the CNC is
increased there is an increase in the fracture energy. However,
the fracture energy saturates around ∼4 kcal/mol-Å2 for a width
of 10 cellulose chains, exhibiting approximately the same value
for larger widths. This plateau is largely due to the edge effect
described earlier and presented in Figure 3B, where bonds at
the edge of the crystal serve as defects and become crack
nucleation points within the crystal. In finite-sized crystals, the
stacking arrangement of cellulose chains is relatively unstable
(see Figure 1B for the crystal geometry) where neighboring
sheets do not stabilize chains at the edges. Considering that van
der Waals interactions are the dominant stabilizing force on the
basis of the analysis presented in Figure 3A, we can conclude
that the edges then have a lower degree of stability and serve as
defect points. Simulations with 5 and 10 repeat units in length
approximately have the same plateau value for the fracture
energy for a crystal width of 10 chains, indicating that this width
is optimized independent of the chain length (see Supporting
Information).

Figure 3. (A) Occupancies of interchain, intrachain, and intersheet hydrogen bonds, the first two of which are within a single cellulose sheet. Values
exceed 100% when two hydrogen bonds can form. The occupancies in the intersheet direction are very low, suggesting transient hydrogen bonding.
(B) Root-meat-square fluctuations for systems of increasing width. The width axis has been normalized to range from 0 to 1. Simulations indicate
greater fluctuations and edge effects in small CNCs compared to larger CNCs.

Figure 4. (A) Fracture energy, G (i.e., the force required to separate CNCs), as a function of the width of the crystals given in terms of the number
of repeat units (length is 20 repeat units for all cases). The blue solid fitting line corroborates that G ∼ ((w − t)/w), where t denotes the size of the
defect region. (B) G as a function of the thickness of the crystals in terms of the number of repeat units on each side of the fracture surface (width
and length are 10 repeat units). The solid fitting follows the G ∼ 1/n2 scaling using H and a as material parameters. Both scaling relationships suggest
that beyond the optimal crystal size (red vertical dotted line) there can be no significant increase in interfacial strength, and further, surface area to
volume ratio will diminish (green dashed line).
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Next, we present an analysis for the scaling of the fracture
energy with crystal thickness, which is defined as the number of
sheets on each side of the fracture plane. Our study on CNCs
with crystal thicknesses ranging from 2 to 20 layers (1.7 to 15.7
nm) shows a saturation effect with increasing thickness, similar
to what is observed with width as shown in Figure 4B. Here we
consider that the dominant force along this direction is van der
Waals interactions (Figure 3A) and that the van der Waals
interaction energy Ev between two parallel infinite plates
separated by a distance a is given by47

π
= −E a

H
a

( )
12v 2 (1)

where H is the Hamaker coefficient that defines the interaction
strength between two surfaces in a medium. Equation 1 is a
general description that requires the knowledge of surface
charge distribution of the interfaces. Within CNCs, the partial
charges of the repeat units, as computed from full electrostatic
calculations based on the CHARMM48,49 force field along with
nonbonded interactions, govern the calculated value of H, and a
= 3.8 Å is determined from the equilibrated crystal structure.
To describe the scaling of the fracture energy, we need to
derive an expression for the scaling of this energy with the
number of sheets in a CNC. Assuming that the Hamaker
coefficient is invariant at these length scales (see Supporting
Information), the total interfacial energy for n stacked sheets
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Assuming a cutoff distance of eight cellulose sheets, beyond
which the sheet interactions can be considered negligible, we
find that this discrete summation function can be approximated
by a continuous relationship of the form Ev(n) = A − k/n2 (see
Supporting Information). The fitting parameters also yield a
prediction for Hamaker’s coefficient, H = 3.9 × 10−20 J, which is
in good agreement with experimental measurements of a
cellulose thin film, H = 5.8 × 10−20 J.50 Using H and a and no
other fitting parameters, agreement of the model is very good
with data as shown in Figure 4B. These findings provide a
physical basis for why there is nearly a 4-fold increase in the
fracture energy of CNCs as the thickness is increased and also
explain why this increase saturates quickly beyond several
nanometers. Specifically, the collective effect of the stacked
cellulose sheets initially contributes greatly to fracture strength
but becomes negligible beyond a critical length scale due to the
decay scaling of van der Waals interactions, which we have
shown to be the dominant forces along the [200] plane of
CNCs.
On the basis of the analyses of width and thickness scaling of

the fracture energy summarized in Figure 4, it is now possible
to determine the smallest width and thickness of a CNC that
maximizes the fracture energy. It should be noted here that the
considerations of the crystal fracture energy alone are not
sufficient to maximize fracture toughness in nanobiocompo-
sites. The ideal nanofiller should maximize the surface to
volume ratio to avoid interfacial failure, which means that
nanocrystals that have the same fracture energy but smaller
thickness and width will mechanically outperform larger
nanocrystals.51 Accordingly, the ideal dimension of cellulose
nanocrystals must be the smallest nanocrystals that maximize

the fracture energy. Since the fracture energy scales inversely
with surface area to volume ratio (Figure 4), an objective
approach to define an optimal dimension is needed. Here the
“optimal” crystal size is then calculated in a Pareto sense52,53

using the difference between the fracture energy and surface to
volume ratio where both quantities are normalized. Consider-
ing the overlap point as the maximum value, the 80−20 Pareto
rule suggests that the optimum dimensions lie at 20% of the
maximum difference between the normalized fracture energy
and normalized surface to volume ratio. On the basis of this
concept, our theoretical calculations supported with simulation
results (shown in Figure 4) suggest that the ideal dimensions of
the crystal should be 6−7 chains wide and 6−7 layers thick,
which corresponds to 6.2−7.3 nm wide by 4.8−5.6 nm thick
CNCs. It should be noted that the optimal thickness of 6−7
layers corresponds to a total crystal thickness of 12−14 layers
(as there are 6−7 layers on each side of the fracture interface).
The approximate dimensions were calculated using the
standard crystalline parameters of Iβ cellulose (a = 0.778 nm,
b = 0.820 nm, and c = 1.0328 nm for cellulose)3 and in the
thickness dimension also take into account the added thickness
of a cellulose chain (∼1.5 Å). These dimensions ensure a
maximum reinforcement effect of CNCs in natural and
synthetic nanocomposites by achieving large surface area that
transfers the load to the CNCs while resisting fracture through
this large, strong interfacial plane.
Although important generally for layered nanomaterials,

these findings are very interesting in the context of cellulose-
based biological materials. Examining compiled experimental
data on cellulose nanocrystals obtained from tunicates, wood
microfibrils, bacterial CNC, and other biosources (see Table S1
in the Supporting Information and Figure 5),3,28 it is clear that

CNCs embedded in amorphous domains in biological
structural materials often have width and height around a few
nanometers, rarely exceeding 10 nm. This concept is intriguing,
and given that the natural use of cellulose involves structural
support, it is conceivable that the conserved size of these
systems follows a mechanical design principle that is aimed at
finding CNCs that achieve the highest fracture energy while
maximizing surface area to volume ratio. The optimal
dimensions obtained with this simple consideration are

Figure 5. Schematic showing typical crystal sizes as they appear in
nature compared to the optimal size discerned through MD (red
diamond).
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illustrated in Figure 5, showing very good agreement with
observations of natural CNCs. In some biological systems such
as wood, the so-called elementary size of cellulose is an
arrangement of 36 individual cellulose chains28 to form what
are termed elementary fibrils and have dimensions ranging from
approximately 2.5 to 3.5 nm.54 Our findings here suggest that
the optimal size from a fracture perspective is close to this value
but slightly greater, perhaps involving larger assemblies of the
basic building blocks.
Our studies build on earlier works that suggested nano-

confinement and flaw tolerance as important natural design
principles for creating strong and tough materials,1,55−58

although illustrating different mechanisms in the case of
CNCs. The optimal dimensions of CNCs arise directly from
the sheet geometry and the scaling nature of the universal van
der Waals molecular interactions along the [200] planetwo
key bottom-up design parameters in nature. The methodology
for computing fracture energies and the size dependence in
nanostructures pave the way for understanding collective
fracture energy scaling in other systems, such as peptide
assemblies and functionalized graphene sheets. Extending this
work to functionalized CNC assemblies and polymer interfaces
will reveal key insight into blending disparate material building
blocks into next-generation functional materials built by nature
and assembled following nature’s own evolutionary design
principles.
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